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Abstract

A modified embedded-atom method (MEAM) interatomic potential for the Fe–C binary system has been developed using previous
MEAM potentials of Fe and C. The potential parameters were determined by fitting to experimental information on the dilute heat of
solution of carbon, the vacancy–carbon binding energy and its configuration, the location of interstitial carbon atoms and the migration
energy of carbon atoms in body-centered cubic (bcc) Fe, and to a first-principles calculation result for the cohesive energy of a hypo-
thetical NaCl-type FeC. The potential reproduces the known physical properties of carbon as an interstitial solute element in bcc Fe
and face-centered cubic Fe very well. The applicability of this potential to atomistic approaches for investigating interactions between
carbon interstitial solute atoms and other defects such as vacancies, dislocations and grain boundaries, and also for investigating the
effects of carbon on various deformation and mechanical behaviors of iron is demonstrated.
� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Carbon is one of the most important alloying elements
in Fe. In addition to the useful effect of carbides on the
mechanical properties of steels, with only small additions
it has a decisive effect on the deformation behavior and
many other properties of steel. Many of the effects of car-
bon on steel properties originate from strong interactions
between interstitial carbon atoms and various defects such
as vacancies, self-interstitials, dislocations and grain
boundaries.

In order to meet the industrial demand for high-perfor-
mance steels, it is necessary to ascertain in more detail the
effect of individual alloying elements on the properties of
steel and to utilize alloying elements more effectively. For
this, it is necessary to analyze the stress or strain caused by
interstitial carbon atoms or carbides and the interaction
between interstitial atoms or carbides and each type of
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primary defect. All these are atomic-scale problems and
can be best investigated using atomistic simulation tech-
niques such as molecular dynamics or Monte Carlo
simulations.

First-principles calculations provide the most reliable
interatomic potentials for atomistic simulations. However,
due to the size (or number of atoms) limit, it is often not
possible to investigate material behaviors using only first-
principles calculations. Another approach is to use (semi-)
empirical interatomic potentials that can deal with more
than a million atoms. Important here is that the inter-
atomic potential should be able to reproduce correctly var-
ious fundamental physical properties (elastic properties,
structural properties, defect properties, surface properties,
thermal properties, etc.) of relevant elements or alloys.
For this purpose, many (semi-)empirical interatomic poten-
tials have been developed for the Fe–C binary system, by
Johnson et al. [1], Rosato [2] and Ruda et al. [3]. The first
two investigations paid attention only to the behavior of
single interstitial carbon atom in the Fe matrix, and did
not consider the carbon–carbon interaction. This is
rights reserved.

mailto:calphad@postech.ac.kr


702 B.-J. Lee / Acta Materialia 54 (2006) 701–711
because it was impossible to describe a pure carbon inter-
atomic potential using the potential formalisms used for
pure Fe. Without considering the carbon–carbon interac-
tion, these potentials cannot be applied to carbide systems.
In the more recent study [3], the authors attempted to
include the carbon–carbon interaction based on an embed-
ded-atom formalism [4]. However, with the embedded-
atom formalism, which does not consider the angular
dependency of binding, the physical properties of pure car-
bon could not be described well. As a result, the position
and migration energy barrier of interstitial carbon atoms
in body-centered cubic (bcc) Fe could not be predicted cor-
rectly using this potential.

A successful and reliable interatomic potential for an
alloy system should be able to reproduce the physical prop-
erties of an alloy system over the entire composition range,
from one pure element side to the other pure element side,
without changing potential parameters or formalism. For
this, it is essential to be able to describe individual elements
using a common mathematical formalism. Several tens of
atomic potential models have been published [5]. Mostly,
the models were for a small group of elements. One had
to use different formalisms or functional forms for elements
of different type (equilibrium structures). This made it dif-
ficult to describe alloy systems composed of elements with
different structures. From this point of view, the modified
embedded-atom method (MEAM [6]) potential may be
said to be highly applicable to multi-component systems,
because it can describe interatomic potentials of a wide
range of elements (face-centered cubic (fcc), bcc, hexagonal
close-packed, diamond and even gaseous elements) using a
common formalism and functional form. The MEAM was
created by Baskes [6], by modifying the embedded-atom
method [4,7] to include the directionality of bonding. In
the original MEAM [6], interactions among only first-near-
est-neighbor atoms were considered. Recently, the MEAM
was modified once again by the present author and Baskes
(2NN MEAM [8,9]) to consider partially second-nearest-
neighbor atom interactions and to remove some critical
shortcomings in the original MEAM.

The 2NN MEAM potential formalism has already been
applied to develop interatomic potentials for pure bcc [9]
and fcc [10] metals. Recently, the formalism was also
applied to develop an interatomic potential of pure carbon
[11]. Because all these potentials were developed based on
the same mathematical formalism, the potentials for indi-
vidual elements can be easily combined to develop alloy
potentials. The purpose of the present work is to develop
an interatomic potential for the Fe–C binary system that
can describe the physical properties of alloys over the entire
composition range, from pure iron to pure carbon, based
on the previously developed 2NN MEAM potentials for
pure Fe [9] and C [11]. A brief description of the 2NN
MEAM formalism for alloy systems, the procedure for
the determination of potential parameters to describe the
Fe–C system and the calculated fundamental physical
properties of Fe–C alloys, especially the interaction of
carbon atoms with various point defects (vacancy, foreign
or self-interstitial atoms) in bcc and fcc Fe matrices, are
presented. Comparisons with available experimental infor-
mation or other calculation results using different atomic
potentials including first-principles calculations are also
presented.
2. Interatomic potential

2.1. Potential formalism

In the MEAM, the total energy of a system is given in
the following form:

E ¼
X
i

F ið�qiÞ þ
1

2

X
jð6¼iÞ

/ijðRijÞ
" #

; ð1Þ

where Fi is the embedding function for an atom i embedded
in a background electron density �qi and /ij (Rij) is the pair
interaction between atoms i and j separated by a distance
Rij. For energy calculations, the functional forms for Fi

and /ij should be given. The background electron density
at each atomic site is computed considering the directional-
ity of bonding, that is, by combining several partial elec-
tron density terms for different angular contributions
with weight factors t(h) (h = 1–3). Each partial electron den-
sity is a function of atomic configuration and atomic elec-
tron density. The atomic electron densities qa(h) (h = 0–4)
are given as

qaðhÞðRÞ ¼ q0 exp½�bðhÞðR=re � 1Þ�; ð2Þ
where q0 the atomic electron density scaling factor and b(h)

the decay lengths are adjustable parameters, and re is the
nearest-neighbor distance in the equilibrium reference
structure. A specific form is given to the embedding func-
tion Fi, but not to the pair interaction /ij. Instead, a refer-
ence structure where individual atoms are on the exact
lattice points is defined and the total energy per atom of
the reference structure is estimated from the zero-tempera-
ture universal equation of state of Rose et al. [12]. Then,
the value of the pair interaction is evaluated from the
known values of the total energy per atom and the embed-
ding energy, as a function of the nearest-neighbor distance.
In the original MEAM [6], only first nearest-neighbor
interactions are considered. The neglect of the second
and more distant nearest-neighbor interactions is made
effective by the use of a strong many-body screening func-
tion [13]. The consideration of the second nearest-neighbor
interactions in the modified formalism is effected by adjust-
ing the screening parameters, Cmin, so that the many-body
screening becomes less severe. In addition, a radial cutoff
function [13] is applied to reduce calculation time. Details
of the MEAM formalism have been published in the liter-
ature [6,8–10,13] and will not be repeated here. Only the
many-body screening which is the most different part of
the MEAM from the other (semi-)empirical potentials is
described again in Appendix.
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To describe an alloy system, the pair interaction between
different elements should be determined. For this, a similar
technique that is used to determine the pair interaction for
pure elements is applied to binary alloy systems. As for the
Fe–C system, a hypothetical Fe3C L12 ordered structure is
chosen as a reference structure. In the L12 Fe3C structure,
the total energy per atom (for 3/4 Fe atom + 1/4 C atom) is
given as follows:

Eu
Fe3C

ðRÞ ¼ 3

4
F Feð�qFeÞ þ

1

4
F Cð�qCÞ

þ Z1

2

1

2
/FeFeðRÞ þ

1

2
/FeCðRÞ

� �

þ Z2

2

3

4
SFe/FeFeðaRÞ þ

1

4
SC/CCðaRÞ

� �
; ð3Þ

where Z1 and Z2 are the numbers of first and second near-
est-neighbors in the L12 Fe3C structure, respectively. In the
present case, Z1 and Z2 are 12 and 6, respectively. SFe and
SC are the screening function for the second nearest-neigh-
bor interactions between Fe atoms and between C atoms,
respectively, and a is the ratio between the second and first
nearest-neighbor distances in the reference structure. The
pair interaction between Fe and C can now be obtained
in the following form:

/FeCðRÞ ¼
1

3
Eu
Fe3C

ðRÞ � 1

4
F Feð�qFeÞ �

1

12
F Cð�qCÞ

� /FeFeðRÞ �
3

4
SFe/FeFeðaRÞ

� 1

4
SC/CCðaRÞ. ð4Þ

The embedding functions FFe and FC can be readily
computed. The pair interactions /FeFe and /CC between
the same type of atoms can also be computed from the
descriptions of individual elements. To obtain Eu

Fe3C
ðRÞ,

the universal equation of state [12] should be considered
once again for L12 Fe3C as follows:

EuðRÞ ¼ �Ecð1þ a� þ da�
3Þe�a� ; ð5Þ

where d is an adjustable parameter,

a� ¼ aðR=re � 1Þ ð6Þ
and

a ¼ 9BX
Ec

� �1=2

. ð7Þ

where re is the equilibrium nearest-neighbor distance, Ec is
the cohesive energy, B is the bulk modulus and X is the
Table 1
Set of MEAM potential parameters for pure Fe and C

Ec re B A b(0) b(1) b(2)

Fe 4.29 2.48 1.73 0.56 4.15 1.0 1.0
C 7.37 1.54 4.45 1.18 4.25 2.8 2.0

The units of the cohesive energy Ec, the equilibrium nearest-neighbor distanc
reference structures of Fe and C are bcc and diamond, respectively.
equilibrium atomic volume of the reference structure. The
parameters Ec, re (or X), B and d of the L12 Fe3C compos-
ing the universal equation of state are assumed or deter-
mined by experiments or high-level calculations. Then the
pair interaction between Fe and C is determined as a func-
tion of the interatomic distance R.

2.2. Determination of potential parameters for the Fe–C

system

In the present work, the (2NN) MEAM parameters for
Fe and C were taken from Lee et al. [9,11] without any
modification (see Table 1). As described in the previous
section, the extension of the MEAM to alloy systems
involves the determination of the pair interaction between
different types of atoms. The main work in describing alloy
systems using the MEAM is to estimate the potential
parameters for the universal equation of state for the refer-
ence structure. Eqs. (5)–(7) show that the potential param-
eters are Ec, re (or X), B and d. The first three are material
properties if the reference structure is a real phase structure
that exists on the phase diagram of a relevant system.
Experimental data on that phase can be used directly.
Otherwise, the parameter values should be optimized so
that experimental information for other phases or high-
level calculation results can be reproduced, if available,
or assumptions should be made. The fourth parameter d

is a model parameter. The value can be determined by fit-
ting to the oB/oP value of the reference structure. When the
reference structure is not a real phase, it is difficult to esti-
mate a reasonable value of d for the alloy system. For such
alloy systems, d is given an average value of those for pure
elements.

In addition to the parameters for the universal equation
of state, two more model parameters must be determined
to describe the alloy systems. One is the Cmin value. As
can be seen in Table 1, each element has its own value of
Cmin. Cmin determines the extent of screening of an atom
(k) to the interaction between two neighboring atoms
(i and j). For pure elements, the three atoms are all the same
type (i–k–j = A–A–A or B–B–B). However, in the case of
alloys, one of the interacting atoms and/or the screening
atom can be different types (there are four cases: i–k–j =
A–B–A, B–A–B, A–A–B and A–B–B). Different Cmin val-
ues may have to be given in each case. Another model
parameter is the atomic electron density scaling factor q0.
For an equilibrium reference structure (R = re), the values
of all atomic electron densities become q0. This is an arbi-
trary value and does not have any effect on calculations for
b(3) t(1) t(2) t(3) Cmax Cmin d

1.0 2.6 1.8 �7.2 2.80 0.36 0.05
5.0 3.2 1.44 �4.48 2.80 1.41 0.00

e re and bulk modulus B are eV, Å and 1012 dyn/cm2, respectively. The
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pure elements. This parameter is often omitted when
describing the potential model for pure elements. However,
for alloy systems, especially for systems where the compos-
ing elements have different coordination numbers, the scal-
ing factor (relative difference) has a great effect on
calculations.

The nine model parameters discussed above, Ec, re, B, d,
Cmin and q0 (there are four binary Cmin parameters), must
be determined to describe the alloy system. The optimiza-
tion of the model parameters is performed by fitting known
physical properties of the alloy system. The experimental
physical properties of the Fe–C alloys available in the liter-
ature are the dilute heat of solution of carbon [14], the
vacancy–carbon binding energy [15–18] and its configura-
tion [19] in bcc Fe, the location of interstitial carbon atoms
[20,21] and the migration energy of carbon atoms [18,22,23]
in bcc- and fcc Fe. First-principles calculation results are
also available for the physical properties of hypothetical
NaCl-type FeC [24–26] and for interactions between pri-
mary defects and carbon atoms in bcc Fe [27] and fcc Fe
[28]. The heat of formation [29] and lattice parameter [30]
of the Fe3C cementite are also valuable experimental infor-
mation. Finally, it should be remembered that there is no
stable carbide phase in the Fe–C binary system (actually,
even the cementite is a metastable phase). Therefore, one
more empirical criterion considered during the parameter
optimization is that no other phase should be predicted
as a stable carbide phase in this system.

The parameter values were determined by fitting to the
above mentioned experimental or first-principles-calculated
physical properties of Fe–C alloys. Individual parameters
did not have effects on all the target property values. By
investigating which parameter affects which property, an
optimized set of parameters could be derived by a system-
atic trial and error approach. The parameter that has the
most significant effect on calculated physical properties
was the atomic electron density scaling factor q0. First, it
was intended roughly to determine the ratio between qC

0

and qFe
0 , and the Ec value fitting to the formation energy

of NaCl-type FeC and heat of solution of carbon in bcc
Fe. The NaCl-type FeC was not stable, and transformed
to different structures upon molecular dynamics runs at
finite temperatures. The cohesive energy of the resultant
transformed structures was often larger than the average
of those for pure Fe and carbon, �4.29 and �7.37 eV,
respectively, which meant the existence of a stable interme-
diate phase. Decreasing the stability of these intermediate
phases by simply increasing the Ec value yielded too large
a heat of solution of carbon in bcc Fe. Therefore, much
effort has been made to minimize the stability of these unan-
ticipated structures and to obtain a correct value for the
heat of solution of carbon in bcc Fe simultaneously. It
was found that to satisfy the above conditions, in addition
to the q0 and Ec, some Cmin parameters (for C–Fe–C and
Fe–C–C) had to be adjusted and even the Cmax(C–Fe–C)
parameter had to be given a smaller value than usual. The
migration energy of a carbon atom in bcc Fe is defined as
the energy difference between an interstitial carbon atom
in a tetrahedral site and in an octahedral site. The parameter
that has the most significant effect on this property was
found to be re. Therefore this parameter value was deter-
mined by fitting to the experimentally reported migration
energy of a carbon atom in bcc Fe. The vacancy–carbon
binding energy and its configuration in bcc Fe was mostly
affected by Cmin(Fe–Fe–C) and B, respectively. Therefore,
these parameter values could be determined by fitting to
the relevant experimental information.

The above procedure was repeated until overall agree-
ments between calculation and the target property values
were obtained. The d parameter was given an average value
of pure components, because its effect on the overall agree-
ment between calculation and target property values was
marginal. Even though more experimental or first-princi-
ples calculation data were available for the behavior of car-
bon atoms in fcc Fe and for cementite, these were not used
for parameter optimization but for comparison in order to
confirm the transferability of the present MEAM potential,
as is shown in the following section. Table 2 shows the final
values of the Fe–C alloy parameters and how each was
determined.

Here, it should be mentioned that the Cmax parameters
have been given a fixed value of 2.8 [9–11], and have never
been counted as adjustable parameters. In the present work,
a lower value had to be given to the Cmax(C–Fe–C) param-
eter in order to minimize the stability of unanticipated
structures and to obtain a correct value for the heat of solu-
tion of carbon in bcc Fe simultaneously, as mentioned
above. According to the MEAM, Cmin determines the posi-
tion of neighboring atoms that completely screens second
nearest-neighbor interactions, while Cmax determines the
position of neighboring atoms that begins screening second
nearest-neighbor interactions. Low values of Cmin and Cmax

mean that the second nearest-neighbor interactions are less
screened by neighboring first nearest-neighbor atoms. In the
NaCl-type FeC structure, for example, all the Fe–Fe inter-
actions and carbon–carbon interactions are second nearest-
neighbor interactions. The fact that a lower Cmax value
(1.44) had to be used for the C–Fe–C screening compared
to other unary or substitutional alloys (2.80) means that
in carbide structures the carbon–carbon interactions may
not be screened by nearest-neighbor Fe atoms as much as
the second nearest-neighbor interactions in pure carbon.
(The second nearest-neighbor interactions in pure carbon
are completely screened by nearest-neighbor carbon atoms
[11].) The present work shows that Cmax should also be con-
sidered as adjustable parameters, especially for an intersti-
tial solid solution system.

3. Calculation of physical properties

In this section, the fundamental physical properties of
the Fe–C alloys calculated using the MEAM potentials
shown in Tables 1 and 2 are presented, and compared with
experimental information or first-principles calculations.



Table 2
MEAM potential parameters for the Fe–C alloy system and procedure for determining each value

Selected value Procedure for determination

Ec 0:75EFe
c þ 0:25EC

c þ 0:95 Fitting dilute heat of solution of carbon in bcc Fe
re 2.364 Fitting migration energy of a carbon atom in bcc Fe
B 2.644 Fitting configuration of vacancy–carbon binding in bcc Fe
d 0.75dFe + 0.25dC Assumption
Cmin(Fe–C–Fe) 0.36 ð¼ CFe–Fe–Fe

min Þ Assumption
Cmin(C–Fe–C) 0.16 Minimizing stability of unanticipated intermediate phases (see text)
Cmin(Fe–Fe–C) 0.16 Fitting vacancy–carbon binding energy in bcc Fe
Cmin(Fe–C–C) 0.16 Minimizing stability of unanticipated intermediate phases (see text)
Cmax(Fe–C–Fe) 2.80 Assumption
Cmax(C–Fe–C) 1.44 Minimizing stability of unanticipated intermediate phases (see text)
Cmax(Fe–Fe–C) 2.80 Assumption
Cmax(Fe–C–C) 2.80 Assumption
q0 qC0 =q

Fe
0 ¼ 6 Minimizing stability of unanticipated intermediate phases (see text)

The units of the cohesive energy Ec, the equilibrium nearest-neighbor distance re and bulk modulus B are eV, Å and 1012 dyn/cm2, respectively. The
reference structure is L12 Fe3C.
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All calculations were performed allowing full relaxations of
individual atoms. The size of the system was 2000 atoms
(10 · 10 · 10 unit cells) for bcc and 864 atoms (6 · 6 · 6 unit
cells) for fcc. It was confirmed that all calculation results
were independent of the system size. The 2NN MEAM for-
malism includes up to second nearest-neighbor interactions.
Therefore, the radial cutoff distance during atomistic simu-
lations should be at least larger than the second nearest-
neighbor distance in the structures under consideration.
All calculations presented here are those performed with a
radial cutoff distance whose size is between the second
and third nearest-neighbor distances (3.6 Å for bcc and
4.0 Å for other structures). The calculations are indepen-
dent of the size of the radial cutoff distance if it is larger than
the third nearest-neighbor distance. Between the second and
third nearest-neighbor distances there is little dependence of
the calculation results on the size of the radial cutoff dis-
tance. Details can be found in the original descriptions of
the Fe MEAM potential [9].

3.1. Carbon in bcc Fe

Table 3 compares interstitial solid solution behaviors of
carbon atoms in a bcc Fe matrix calculated using the
MEAM potentials with those from experiments or other
calculations. The first four quantities are fitted property
values, and the others are pure prediction. The MEAM
potential gives a very good agreement with experimental
data for dilute heat of solution and migration energy of
carbon in bcc Fe. As is experimentally accepted [21], for
an interstitial carbon atom, the octahedral site is energeti-
cally more favorable than the tetrahedral site. Fig. 1 shows
the most stable location (octahedral site) of an interstitial
carbon atom in bcc Fe. For an interstitial carbon atom in
an octahedral site, there are two nearest-neighbor Fe atoms
in the Æ001æ directions and four second nearest-neighbor
Fe atoms in the Æ110æ directions. When compared to pure
Fe, the distance between the carbon atom (in the center of
the octahedral site) and the nearest Fe atoms increases by
28.7%, while that between the carbon atom and second
nearest Fe atoms decreases by �3.8%. According to an ear-
lier empirical potential by Rosato [2] these relaxations are
+28.7 and �4.7%, respectively. A recent first-principles cal-
culation [27] gives similar results, +24.3 and �1.8%.

A binding energy between two defects is the energy
gained when the two defects are interacting as neighbors
to each other compared to when they are separated and
non-interacting. Experimental data for the vacancy–carbon
binding energy show a large scattering, ranging from 0.41
to 1.1 eV. The lowest value has been taken as the target
value in previous studies [1,2] on the development of empir-
ical potentials of the Fe–C system. The first-principles cal-
culation [27] also gives a low value, 0.44 eV. However, in
the present study, it was difficult to decrease this value
below the current one, 0.9 eV, keeping good agreement
with other properties. The present calculation is in better
agreement with more recent experimental values, 0.85–
1.1 eV [16–18]. It is experimentally reported [19] that in
the vacancy–carbon binding the carbon atom is not located
on the center of the vacancy, but forms an asymmetric
vacancy–carbon pair in the Æ001æ direction with a distance
slightly smaller than half the lattice constant, as shown in
Fig. 2. The present calculation, the calculation using the
Johnson potential [31] and the first-principles calculation
[27] give 0.43a0, 0.365a0 and 0.4a0 (a0 is the lattice constant)
for the distance of the carbon atom from the center of the
vacancy, respectively, in qualitative agreement with the
experimental information [19].

Two carbon atoms in neighboring octahedral sites can
be energetically more stable than those separated without
interaction. Fig. 3 shows the configuration of two carbon
interstitial atoms with the highest binding energy,
0.34 eV, according to the present potential. The two carbon
atoms are arranged along the Æ120æ direction. A slightly
smaller binding energy value (0.32 eV) can be obtained
when the two carbon atoms are arranged along the Æ100æ
direction. Similar results have also been obtained for the
Johnson potential [1], while the first-principles calculation
gives a slightly negative binding energy for the latter case
(Æ100æ arrangement, see Table 3). The most stable shape



Fig. 1. The most stable configuration of an interstitial carbon atom in an
octahedral site of bcc Fe according to the present potential. The small
black circle represents the interstitial carbon atom. Large circles represent
Fe atoms. The first and second nearest-neighbor Fe atoms to the carbon
atom are represented by black and gray circles, respectively.

Fig. 2. The most stable configuration of a vacancy–carbon binding in bcc
Fe according to the present potential. The small black circle, large white
circles and the square represent carbon, Fe atoms and the vacancy,
respectively.

Table 3
Physical properties of the bcc Fe–C alloys calculated using the present 2NNMEAM potential, in comparison with experimental data or other calculations

In bcc Fe MEAM expt./calc.

Dilute heat of solution of carbon (eV) 1.22 1.1 ± 0.2a

Migration energy barrier of carbon (eV) 0.82 0.88b, 0.86c, 0.81–0.83d

Vacancy–carbon binding energy (eV) 0.90 0.41e, 0.85f, 1.05g, 1.1b

Vacancy–carbon binding distance (a0) 0.43 0.41h, 0.48i, 0.44j, 0.365k, 0.40j

Carbon–carbon binding energy (eV) 0.34 Æ120æ 0.08h, 0.13j

0.32 Æ100æ 0.11h, �0.09j

Self interstitial–carbon binding energy (eV) 0.68 0.56h, �0.19j

Vacancy–two carbon binding energy (eV) 1.86 Æ100æ 1.07j

0.49 Æ110æ 1.50j

a0 is the equilibrium lattice constant and the crystallographic directions Æ120æ, etc., represent the direction of carbon–carbon alignment (see text). The
reference states of all bindings are the states where all the individual defects are separated and non-interacting with each other.
a Ref. [14].
b Ref. [18].
c Ref. [22].
d Ref. [23].
e Ref. [15].
f Ref. [17].
g Ref. [16].
h Empirical potential calculation [1].
i Empirical potential calculation [2].
j First-principles calculation [27].
k Ref. [31].
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of a self-interstitial in bcc Fe is a Æ110æ dumbbell. The pres-
ent potential also predicts a strong binding between a self-
interstitial and an interstitial carbon atom. There are
several interstitial positions for carbon atoms that show



Fig. 3. The most stable configuration of two carbon interstitial atoms in
bcc Fe according to the present potential. The small black circles and large
white circles represent carbon and Fe atoms, respectively.

ig. 4. The most stable configuration of self-interstitial atoms and a
arbon interstitial atom in bcc Fe according to the present potential. The
mall black circle, large white circles and large gray circles represent
arbon, normal Fe and self-interstitial Fe atoms, respectively.
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positive binding around a self-interstitial. The positions
with the largest binding energies are the nearest-neighbor
octahedral sites located in the Æ001æ direction from the cen-
ter of the Æ110æ dumbbell, and are shown in Fig. 4. The
computed binding energy is 0.68 eV. The stress state for
this site should be similar to that of the bottom of an edge
dislocation (tensile region), and positive binding with car-
bon atoms can be easily expected. The earlier potential
by Johnson [1] also gives a positive binding energy of
0.56 eV for the same configuration. However, the first-prin-
ciples calculation [27] predicts a negative binding with a
binding energy of �0.39 and �0.19 eV for 54-atom (125
k points) and 128-atom (27 k points) supercells, respec-
tively. The resultant values show a strong dependence on
the number of atoms considered, and it seems that a larger
number of atoms should be considered to obtain more sta-
ble results. According to the present MEAM potential, for
example, the dilute heat of solution of carbon in bcc Fe is
calculated to be 1.16, 1.19, 1.21, 1.22 and 1.22 eV for sys-
tem sizes of 54, 128, 251, 432 and 2000, respectively. The
calculated defect energies certainly show a size dependency
when the system size is smaller than 432 atoms. For bind-
ing energy calculations that involve more than two defects,
the size dependency would be more severe. The present
MEAM calculation proposes that at least 432 atoms
should be considered to obtain converged values for single
defect formation energy.

Both the present MEAM potential and the first-princi-
ples calculation [27] show that binding of a vacancy and
two carbon atoms is more stable than a vacancy–carbon
pair and a non-interacting carbon interstitial. The binding
energy of a vacancy–carbon pair with a second carbon
atom is even larger than that of the binding between a
F
c
s
c

vacancy and a carbon atom. However, the two calculations
predict the most stable configuration differently. According
to the present potential, the most stable vacancy–two car-
bon binding configuration is to form a Æ100æ carbon–
carbon dumbbell with the vacancy at the center of the
dumbbell. This configuration is shown in Fig. 5. It should
be mentioned here that actually the carbon atoms are
slightly relaxed toward the vacancy, as shown in Fig. 2.
The first-principles calculation [27] also predicts a positive
binding for this configuration. However, it predicts an even
larger binding energy when the two carbon atoms align in
the Æ110æ direction on the nearest-neighbor sites of the
vacancy, so that the carbon–vacancy–carbon bonding
angle becomes 90�. The present potential predicts that this
configuration is more stable than the situation where all the
point defects are separated and non-interacting with each
other, but less stable than the state where one vacancy–car-
bon pair is formed and the other carbon atom is non-inter-
acting with this pair.

3.2. Carbon in fcc Fe

The same calculations were performed for the solid solu-
tion behavior of carbon in fcc Fe. The results are compared
with available experimental data or other calculations in
Table 4. These properties were not considered during poten-
tial parameter optimization, and therefore the MEAM cal-
culation results in Table 4 are pure predictions. The
octahedral vacant site is again the most stable site for inter-
stitial carbon atoms in fcc Fe, and the dilute heat of solution
of carbon is calculated to be 0.3 eV. A recently reported
first-principles calculation [28] gives a lower value of



Fig. 5. The most stable configuration of a vacancy–two carbon binding in
bcc Fe according to the present potential. The small black circles, large
white circles and the square represent carbon, Fe atoms, and the vacancy,
respectively.
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0.12 eV. A CALPHAD [32,33] type thermodynamic assess-
ment study of the Fe–C binary system is also available [29].
According to this study, the dilute heat of solution of car-
bon in bcc Fe is 1.11 eV, which is in good agreement with
the experimental value, 1.1 eV [14]. The same quantity for
fcc Fe according to this thermodynamic assessment study
is 0.36 eV, which is also in good agreement with the present
prediction. The relaxations of surrounding Fe atoms are
small compared to those in bcc Fe, yielding 5.7% and
3.1% increases in the distance between carbon and the six
Table 4
Physical properties of the fcc Fe–C alloys calculated using the present
2NN MEAM potential, in comparison with experimental data or other
calculations

In fcc Fe (eV) MEAM expt./calc.

Dilute heat of solution of carbon 0.30 0.36a, 0.12b

Migration energy barrier of carbon 1.52 1.4c, 1.53d

Vacancy–carbon binding energy 0.67 0.37–0.41e

Carbon–carbon binding energy �0.12 Æ110æ
�0.35 Æ100æ

Self interstitial–carbon binding energy 0.58

Vacancy–two carbon binding energy 1.55 Æ100æ
1.08 Æ110æ

The crystallographic directions Æ110æ, etc., represents the direction of
carbon–carbon alignment (see text). The reference states of all bindings
are the states where all the individual defects are separated and non-
interacting with each other.
a Thermodynamic assessment [29].
b First-principles calculation [28].
c Ref. [22].
d Ref. [34].
e Experiments and first-principles calculation [28].
first nearest Fe atoms along the Æ100æ direction and
between carbon and the eight second nearest Fe atoms
along the Æ111æ direction, respectively.

Concerning the migration of interstitial carbon atoms in
fcc Fe, it has been proposed [2] that passing the tetrahedral
site, as is the case in bcc Fe, cannot be the migration path,
because the migration energy is computed to be too high
compared to the experimental value, 1.4–1.53 [22,34], along
this path. The most favorable diffusion path for carbon
atomswas proposed to be the Æ110æ direction, and the saddle
point to be half way between neighboring octahedral sites
along the Æ110æ direction [2]. Similar results were obtained
with the present potential, and the migration energy barrier
of carbon was calculated using the same method as in Ref.
[2]. The present calculation predicts the migration energy
of carbon in fcc Fe to be 1.52 eV, again in good agreement
with the experimental value of 1.4–1.53 eV. As in the bcc
solid solution, the carbon atom in the vacancy–carbon bind-
ing is not located close to the center of the vacancy, but is
located almost exactly on the original octahedral site. The
calculated binding energy is 0.67 eV, which is larger than
the 0.37–0.41 eV proposed from experimental information
and first-principles calculation [28].

In contrast to the bcc Fe–C solid solution, the carbon–
carbon binding in neighboring octahedral sites is predicted
to be energetically unfavorable. Two cases were considered
(Fig. 6), one where two carbon atoms are located in the
first nearest-neighboring interstitial sites being aligned
along the Æ110æ direction, and the other where two carbon
atoms are located in the second nearest-neighboring inter-
stitial sites aligned along the Æ100æ direction with an Fe
atom between them. According to the present potential,
the binding energy for the first case (first nearest Æ110æ
alignment, Fig. 6(a)) is �0.12 eV, while that for the second
case (second nearest Æ100æ alignment, Fig. 6(b)) is
�0.35 eV. It has been experimentally deduced that the
repulsion between carbon atoms occupying neighboring
interstitial sites is weak whereas carbon atoms as second
nearest neighbors repulse each other strongly [20], which
qualitatively supports the present calculations.

The binding energy between a self-interstitial and a car-
bon atom is also large in fcc Fe. In fcc metals, the most sta-
ble shape of a self-interstitial is a Æ100æ dumbbell. The
largest binding energy, 0.58 eV, is obtained when the inter-
stitial carbon atom is located on the nearest-neighbor octa-
hedral site from the center of a Æ100æ dumbbell,
perpendicular to the dumbbell direction. A strong binding
between one vacancy and two carbon atoms is also pre-
dicted in fcc Fe. As in the case of bcc Fe, the most stable
vacancy–two carbon binding configuration is a Æ100æ car-
bon dumbbell with the vacancy at the center of the dumb-
bell. However, in contrast to the case in bcc Fe, the carbon
atoms are not relaxed toward each other but remain on
their original octahedral sites. The configuration where
two carbon atoms align in a Æ110æ direction on nearest-
neighbor sites of the vacancy so that the carbon–
vacancy–carbon bonding angle becomes 90� is also pre-



a

b

Fig. 6. Configurations of two carbon interstitial atoms in fcc Fe where
two carbon atoms are located (a) in the first nearest-neighboring
interstitial sites along the Æ110æ direction, and (b) in the second nearest-
neighboring interstitial sites along the Æ100æ direction. The small black
circles and large white circles represent carbon and Fe atoms, respectively.
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dicted to be energetically favorable, but with less binding
energy than the above Æ100æ binding. It should be men-
tioned here that the present potential also predicts a posi-
tive binding between one vacancy and the six nearest-
neighbor carbon atoms with a binding energy of 2.79 eV.

3.3. Carbides

It has been shown that the present MEAM potential
reproduces very well the known physical properties of car-
bon as an interstitial solute element in bcc and fcc Fe,
whether or not the individual properties were included dur-
ing potential parameter optimization. The potential can be
used reliably to investigate the interactions between carbon
interstitial solute atoms and other defects such as vacan-
cies, dislocations and grain boundaries. By correctly
describing the relaxations of iron atoms around interstitial
carbon atoms, this potential can also be used to investigate
the effects of carbon on various deformation and mechan-
ical behaviors of iron. However, investigating only the Fe–
C binary behavior is not the final goal of this atomistic
approach. It should be possible to investigate higher order
alloy systems including more alloying elements using the
same approaches. For this, the potential should be
extended to higher order systems, involving many other
elements with different equilibrium structures. As already
mentioned, describing interatomic potentials of a wide
range of elements using a common potential formalism
and being able to deal with various alloy systems easily is
the strongest point of the present (2NN) MEAM potential
formalism. Naturally, the next step of the present study
would be to extend the potential into many Fe–metal–C
ternary systems. Fe–metal–C ternary systems are charac-
terized by the formation of various carbides as well as
the solution effects of the solute ‘‘metal’’ elements. There-
fore, before proceeding to multi-component systems, it is
important to further check the transferability and to learn
the limits of the applicability of the present Fe–C potential,
especially concerning the carbide phases.

As a means of checking the transferability of the present
potential, the formation energies and lattice parameters of
Fe3C cementite and NaCl-type FeC were calculated. In the
case of cementite, the calculation results could be com-
pared with experimental information because the cementite
is a real carbide. Though the NaCl-type FeC is not a real
carbide in the Fe–C system, first-principles calculation
results [24–26] are available for the cohesive energy, lattice
parameter and bulk modulus. The results of these calcula-
tions are compared with the experimental or high-level cal-
culation data in Table 5. The cementite is not a stable
carbide in the Fe–C binary system. According to a thermo-
dynamic assessment of the Fe–C system [29], the formation
enthalpy of the cementite is about +0.06 eV for the refer-
ence states of bcc Fe and graphite carbon, at 298 K. The
present MEAM potential predicts a value of +0.02 eV at
0 K. The lattice parameters are also comparable to the
experimental data [30], even though these data were not
considered during parameter optimization. However, it
should be mentioned that some relaxations of atomic posi-
tions occurred during energy minimization, and small fluc-
tuations in the atom positions and cohesive energy were
observed even at 0 K. Further, the cementite structure
could not be maintained during high-temperature MD
(molecular dynamics) runs (above 600 K), yielding slightly
transformed structures with more negative cohesive ener-
gies than the initial structure by about a few hundredths
of an eV. This means that the present potential is not
adequate to investigate in detail the stability, atomic struc-



Table 5
Physical properties of metastable carbides in the Fe–C system calculated
using the present 2NN MEAM potential, in comparison with experimen-
tal data or other calculations

MEAM expt./calc.

Cementite

Heat of formation (eV) +0.02 +0.06a

Lattice constants, a, b, c (Å) 5.16, 6.32, 4.66 5.09, 6.74, 4.52b

NaCl-type FeC

Cohesive energy (eV) �5.36 �5.26c

Lattice constant, a (Å) 4.08 4.08d

Bulk modulus (GPa) 420 280e

a Thermodynamic assessment [29].
b Ref. [30].
c First-principles calculation [24].
d First-principles calculation [25].
e First-principles calculation [26].

710 B.-J. Lee / Acta Materialia 54 (2006) 701–711
ture and interface structure with matrix of cementite at
non-zero temperatures (especially above the room
temperature).

According to the present potential, the NaCl-type FeC
structure was not stable, and various transformed struc-
tures resulted during MD runs at finite temperatures. The
calculated values in Table 5 are those obtained just before
the start of the collapse of the initial NaCl structure at 0 K.
The calculated bulk modulus should be regarded as a
rough estimation because a convergent cohesive energy
value could not be obtained. Even though no special atten-
tion was paid to the lattice parameter of the FeC, the agree-
ment with the first-principles calculation is quite good.
However, it should be mentioned again that some of the
transformed structures after the collapse of the NaCl-type
structure were calculated to have larger cohesive energies
than the average of those for pure Fe and carbon. Eventu-
ally, it was found that the most stable structure at 50 at.%
C was the ZnS-type structure, with an erroneously negative
formation energy of about �0.25 eV. Even though great
efforts have been made to minimize the stability of this
structure, the occurrence of this unanticipated stable struc-
ture could not be avoided. Therefore, care should be taken
when using the present potential at high carbon content
regions. One should check whether the initial matrix struc-
ture is kept or a different structure is created during high-
temperature MD runs, although it would be impossible
to observe the formation of ZnS-type FeC during normal
MD simulation times.

Even with the limitations mentioned above, it is believed
that the potential can be used to analyze the stability and
interaction with the matrix of relatively simple MC and
also hopefully M2C-type carbides in Fe–metal–C ternary
systems. As has already been shown, the stability and lat-
tice parameter of hypothetical FeC is reasonably repro-
duced. The present author also already confirmed that
the stability and lattice parameter of the same NaCl-type
TiC carbide and the solute behavior of carbon in pure tita-
nium could be correctly reproduced [35], using the present
carbon potential [11] and a newly developed titanium
potential [36]. Therefore, it should be possible to describe
correctly the solute behavior of carbon and structural
behavior of MC-type (Fe,Ti)C in the Fe–Ti–C ternary sys-
tem. A promising result could also be obtained for the MC
and M2C-type carbides in the V–C binary system [35],
using the already developed vanadium potential [9] and
the carbon potential [11].

4. Conclusion

It has been shown that the present 2NN MEAM poten-
tial when applied to the Fe–C binary system can reproduce
various physical properties such as the dilute heat of solu-
tion of carbon, the vacancy–carbon binding energy and its
configuration, the location of interstitial carbon atoms and
the migration energy of carbon atoms in bcc and fcc Fe, in
good agreement with experimental information. In particu-
lar, the potential gives good agreement with fcc properties
even though only bcc properties were used for fitting,
which shows that the formalism is predictive. The potential
can be used reliably to investigate the interactions between
carbon interstitial solute atoms and other defects such as
vacancies, dislocations and grain boundaries, and even to
investigate the effects of carbon on various deformation
and mechanical behaviors of iron. Some limitations are
also expected when dealing with complex carbides using
this semi-empirical interatomic potential in multi-compo-
nent carbide systems. Even with these limitations, the
potential can be easily extended to multi-component Fe–
metal–C systems and used to analyze the stability and
interaction with the matrix of relatively simple MC and
M2C-type carbides as well as the solution effects of solute
‘‘metal’’ elements.
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Appendix

One of the main differences between the MEAM and
other empirical potentials is the use of many-body screen-
ing in the MEAM. The creation of the 2NN MEAM was
also achieved by modifying the many-body screening so
that it becomes less severe than in the original MEAM.
Therefore, it would be worth describing once again the
many-body screening [13] used in the MEAM formalism.

In the original MEAM [6], the neglect of the second
nearest-neighbor interactions is effected by the use of a
strong many-body screening function [13]. In the same
way, the consideration of the second nearest-neighbor
interactions in the modified formalism (2NN MEAM
[8–10]) is effected by adjusting the many-body screening
function so that it becomes less severe. In the MEAM,
the many-body screening function between atoms i and j,
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Sij, is defined as the product of the screening factors, Sikj,
due to all other neighbor atoms k:

Sij ¼
Y
k 6¼i;j

Sikj. ðA:1Þ

The screening factor Sikj is computed using a simple geo-
metric construction. Imagine an ellipse on an x, y plane,
passing through atoms i, k and j with the x-axis of the el-
lipse determined by atoms i and j. The equation of the el-
lipse is given by

x2 þ 1

C
y2 ¼ 1

2
Rij

� �2

. ðA:2Þ

For each k atom, the value of parameter C can be com-
puted from relative distances among the three atoms, i, j
and k, as follows:

C ¼ 2ðX ik þ X kjÞ � ðX ik � X kjÞ2 � 1

1� ðX ik � X kjÞ2
; ðA:3Þ

where Xik = (Rik/Rij)
2 and Xkj = (Rkj/Rij)

2. The screening
factor Sikj is defined as a function of C as follows:

Sikj ¼ fc
C � Cmin

Cmax � Cmin

� �
; ðA:4Þ

where Cmin and Cmax are the limiting values of C determin-
ing the extent of screening and the smooth cutoff function
is

fcðxÞ ¼ 1; x P 1;

½1� ð1� xÞ4�2; 0 < x < 1;

0; x 6 0.

ðA:5Þ

The basic idea for the screening is that, first, two limiting
values are defined, Cmax and Cmin (Cmax > Cmin). Then, if
the atom k is outside of the ellipse defined by Cmax, it is
thought that the atom k does not have any effect on the
interaction between atoms i and j. If the atom k is inside
of the ellipse defined by Cmin it is thought that the atom k

completely screens the i–j interaction, and between Cmax

and Cmin the screening changes gradually. In the numerical
procedure of simulation the electron density and pair poten-
tial are multiplied by the screening function Sij. Therefore,
Sij = 1 and Sij = 0 mean that the interaction between atoms
i and j is unscreened and completely screened, respectively.
In the original MEAM [6], Cmax = 2.8 and Cmin = 2.0 were
chosen. These values ensure that for the fcc structure first
nearest neighbors are completely unscreened for reasonably
large thermal vibration, and the interactions are still first
neighbor only even in the bcc structure. In addition to the
many-body screening function, a radial cutoff function
which is given by fc[(rc � r)/Dr], where rc is the cutoff
distance and Dr (0.1 Å) is the cutoff region, is also applied
to the atomic electron density and pair potential [13]. The
radial cutoff distance is chosen so that it does not have
any effect on the calculation results due to the many-body
screening. This is only for computational convenience, that
is, to save computation time.
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